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Abstract. The amount of raw data exchanged via web protocols is
steadily increasing. Although the Linked Data infrastructure could po-
tentially be used to selectively share RDF data with different individuals
or organisations, the primary focus remains on the unrestricted sharing
of public data. In order to extend the Linked Data paradigm to cater for
closed data, there is a need to augment the existing infrastructure with
robust security mechanisms. At the most basic level both access control
and encryption mechanisms are required. In this paper, we propose a flex-
ible and dynamic mechanism for securely storing and efficiently querying
RDF datasets. By employing an encryption strategy based on Functional
Encryption (FE), in which data access is enforced by the cryptographic
approach itself, we allow for fine-grained access control over encrypted
RDF data while at the same time reducing the administrative overhead
associated with access control management.

1 Introduction

The Linked Data infrastructure could potentially be used not only to distribut-
edly share public data but also to selectively share data, perhaps of a sensitive
nature (e.g. personal data, health data, financial data, etc.), with specific in-
dividuals or organisations (i.e. closed data). In order to realise this vision, we
must first extend the existing Linked Data infrastructure with suitable security
mechanisms. More specifically, encryption is needed to protect data in case the
server is compromised, while access control is needed to ensure that only au-
thorised individuals can access specific data. Apart from the need to protect
data, robustness in terms of usability, performance and scalability is a major
consideration.

However, current encryption techniques for RDF are still very limited, espe-
cially with respect to the flexible maintenance and querying of encrypted data in
light of user access control policies. Initial, partial encryption techniques [16, 17]
focus on catering for both open and encrypted data in the same representation
and how to incorporate the metadata necessary for decryption. More recently,
[21] proposed the generation of multiple ciphertexts per triple (i.e. each triple
is encrypted multiple times depending on whether or not access to the subject,
predicate and/or object is restricted) and the distribution of several keys to users.
Although finer-grained access control is supported, the maintenance of multiple



ciphertexts (i.e. encrypted triples) and keys presents scalability challenges. Ad-
ditionally, such an approach, or likewise term-based encryption of RDF graphs,
means that the structure of parts of the graph that should not be accessible
could potentially be recovered, thus posing a security risk (cf. for instance [32]).

Beyond RDF, novel cryptography mechanisms have been developed that en-
able the flexible specification and enforcement of access policies over encrypted
data. Predicate-based Encryption (PBE) [22] – which we refer to as Functional
Encryption (FE) in order to avoid confusion with RDF predicates – enables
searching over encrypted data, mainly for keywords or the conjunction of key-
word queries, while alleviating the re-encryption burden associated with adding
additional data.

Herein, we extend recent findings on FE to RDF, and demonstrate how FE
can be used for fine-grained access control based on triples patterns over en-
crypted RDF datasets. Summarising our contributions, we: (i) adapt functional
encryption to RDF such that it is possible to enforce access control over en-
crypted RDF data in a self enforcing manner; (ii) demonstrate how encryption
keys based on triple patterns can be used to specify flexible access control for
Linked Data sources; and (iii) propose an indexing strategy that enhances query
performance and scalability. Experiments show reasonable loading and query
performance overheads with respect to traditional, non-encrypted data retrieval.
The remainder of the paper is structured as follows: We discuss related work and
potential alternatives to our proposal in Section 2. The details of our specific ap-
proach and optimisations are presented in Section 3 and Section 4 respectively,
and evaluated in Section 5. Finally, we conclude and outline directions for future
work in Section 6.

2 Related Work

When it comes to access control for RDF, broadly speaking researchers have fo-
cused on representing existing access control models and standards using seman-
tic technology; proposing new access control models suitable for open, hetero-
geneous and distributed environments; and devising languages and frameworks
that can be used to facilitate access control policy specification and maintenance.
Kirrane et al. [23] provide a comprehensive survey of existing access control
proposals for RDF. Unlike access control, encryption techniques for RDF has
received very little attention to date. Giereth [17] demonstrate how public-key
encryption techniques can be used to partially encryption RDF data represented
using XML. While, Giereth [17] and Gerbracht [16] propose strategies for com-
bining partially encrypted RDF data with the metadata that is necessary for
decryption. Kasten et al. [21] propose a framework that can be used to query
encrypted data. In order to support SPARQL queries based on triple patterns
each triple is encrypted eight times according to the eight different binding pos-
sibilities. Limitations of the approach include the blowup associated with main-
taining eight ciphers per triple and the fact that the structure of the graph is
still accessible.



Searchable Symmetric Encryption (SSE) [9] has been extensively applied in
database-as-a-service and cloud environments. SSE techniques focus on the en-
cryption of outsourced data such that an external user can encrypt their query
and subsequently evaluate it against the encrypted data. More specifically, SSE
extracts the key features of a query (the data structures that allow for its resolu-
tion) and encrypts them such that it can be efficiently evaluated on the encrypted
data. Extensive work has been done in basic SSE, which caters for a single key-
word [6]. Recent improvements have been proposed to handle conjunctive search
over multiple keywords [4], and to optimise the resolution to cater for large scale
data in the presence of updates [5, 20, 30]. However, all of these works focus on
keyword-based retrieval, whereas structured querying (such as SPARQL) over
encrypted RDF datasets would require (at least) an unrestricted set of triple
query patterns. In contrast, Fully Homomorphic Encryption (FHE) [15] allows
any general circuit/computation over encrypted data, however it is prohibitively
slow for most operations [7, 28]. Thus, practical, encryption databases such as
CryptDB [28] make use of lighter forms of encryption that still cater for com-
putations (such as sums) over the encrypted data [27], at the cost of different
vulnerability/feasibility trade-offs. Recently, predicate encryption [22], whereby
predicates correspond to the evaluation of disjunctions, polynomial equations
and inner products, enables security in light of unrestricted queries. Predicate
encryption has has a proven track record of efficiency in terms of conjunctive
equality, range and subset queries.

The solution we propose builds on an existing work that define access control
policies based on RDF patterns that are in turn enforced over RDF datasets
[23]. While, existing proposals enforce access control over plain RDF data via
data filtering (i.e. a query is executed against a dataset which is generated by
removing the unauthorised data) or query rewriting (i.e. a query is updated so
that unauthorised data will not be returned and subsequently executed over the
unmodified dataset), we demonstrate how functional encryption can be used to
enforce access control over encrypted RDF data in a self enforcing manner (i.e.
without the need for either data filtering or query rewriting). Unlike previous
approaches we store one cipher per triple and employ a hashing indexing strategy
that can be used for efficient querying while at the same time reducing the
amount of data that needs to be stored. In addition, we propose a mechanism to
obfuscate the graph structure with real indexes and dummy ciphers that can’t
be decrypted, making the dummy hashes and ciphers indistinguishable from real
hashes and ciphers.

3 Secure and Fine-grained Encryption of RDF

Common public-key encryption schemes usually follow an all-or-nothing ap-
proach (i.e., given a particular decryption key, a ciphertext can either be de-
crypted or not) which in turn requires users to manage a large amount of keys,
especially if there is a need for more granular data encryption [2]. Recent ad-
vances in public-key cryptography, however, have led to a new family of encryp-
tion schemes called Functional Encryption (FE) which addresses aforementioned



issue by making encrypted data self-enforce its access restrictions, hence, allow-
ing for fine-grained access over encrypted information. In a functional encryption
scheme, each decryption key is associated with a boolean function and each ci-
phertext is associated with an element of some attribute space 𝛴; a decryption
key corresponding to a boolean function 𝑓 is able to decrypt a particular ci-
phertext associated with 𝐼 ∈ 𝛴 iff 𝑓(𝐼) = 1. A functional encryption scheme
is defined as a tuple of four distinct algorithms (Setup, Enc, KeyGen, Dec)
such that:

Setup is used for generating a master public and master secret key pair.
Enc encrypts a plaintext message 𝑚 given the master public key and an element

𝐼 ∈ 𝛴. It returns a ciphertext 𝑐.
KeyGen takes as input the master secret key and generates a decryption key

(i.e., secret key) 𝑆𝐾𝑓 for a given boolean function 𝑓 .
Dec takes as input a secret key 𝑆𝐾𝑓 and a ciphertext 𝑐. It extracts 𝐼 from 𝑐

and computes 𝑓(𝐼).

3.1 A Functional Encryption Scheme for RDF

While there exist various different approaches for realising functional encryption
schemes, we build upon the work of Katz et al. [22] in which functions correspond
to the computation of inner-products over Z𝑁 (for some large integer 𝑁). In
their construction, they use 𝛴 = Z𝑛

𝑁 as set of possible ciphertext attributes
of length 𝑛 and ℱ = {𝑓�⃗�|�⃗� ∈ Z𝑛

𝑁 } as the class of decryption key functions.
Each ciphertext is associated with a (secret) attribute vector �⃗� ∈ 𝛴 and each
decryption key corresponds to a vector �⃗� that is incorporated into its respective
boolean function 𝑓�⃗� ∈ ℱ where 𝑓�⃗�(�⃗�) = 1 iff

∑︀𝑛
𝑖=1 𝑦𝑖𝑥𝑖 = 0.

In the following, we discuss how this encryption scheme can be utilised (i.e.,
its algorithms adopted1) to provide fine-grained access over encrypted RDF
triples. Thus, allow for querying encrypted RDF using triple patterns such that
a particular decryption key can decrypt all triples that satisfy a particular triple
pattern (i.e. one key can open multiple locks). For example, a decryption key
generated from a triple pattern (?,p,?) should be able to decrypt all triples
with p in the predicate position.

Encrypting RDF Triples (Enc) To be able to efficiently encrypt large RDF
datasets, we adopt a strategy commonly used in public-key infrastructures for
securely and efficiently encrypting large amounts of data called Key Encapsula-
tion [24]. Key encapsulation allows for secure but slow asymmetric encryption
to be combined with simple but fast symmetric encryption by using asymmetric
encryption algorithms for deriving a symmetric encryption key (usually in terms
of a seed) which is subsequently used by encryption algorithms such as AES [11]
for the actual encryption of the data. We illustrate this process in Figure 1.

Thus, to encrypt an RDF triple 𝑡 = (𝑠, 𝑝, 𝑜), we first compute its respective
triple vector (i.e., attribute vector) �⃗�𝑡 and functionally encrypt (i.e., compute
1 The Setup algorithm remains unchanged.
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Fig. 1: Process of encrypting an RDF triple 𝑡.

Enc as defined in [22]) a randomly generated seed 𝑚𝑡 using �⃗�𝑡 as the associated
attribute vector. Triple vector 𝑦𝑡 where 𝑦𝑡 = (𝑦𝑠, 𝑦′𝑠, 𝑦𝑝, 𝑦′𝑝, 𝑦𝑜, 𝑦′𝑜) for triple 𝑡 is
constructed as follows, where 𝜎 denotes a mapping function that maps a triple’s
subject, predicate, and object value to elements in Z𝑁 :

𝑦𝑙 := −𝑟 · 𝜎(𝑙), 𝑦′𝑙 := 𝑟, with 𝑙 ∈ {𝑠, 𝑝, 𝑜} and random 𝑟 ∈ Z𝑁

Table 1 illustrates the construction of a triple vector 𝑦𝑡 based on RDF triple 𝑡.

Triple 𝑡 Triple Vector 𝑦𝑡

𝑡1 = (s1,p1,o1) �⃗�𝑡1 = (−𝑟1 · 𝜎(𝑠1), 𝑟1,−𝑟2 · 𝜎(𝑝1), 𝑟2,−𝑟3 · 𝜎(𝑜1), 𝑟3)
𝑡2 = (s2,p2,o2) �⃗�𝑡2 = (−𝑟4 · 𝜎(𝑠2), 𝑟4,−𝑟5 · 𝜎(𝑝2), 𝑟5,−𝑟6 · 𝜎(𝑜2), 𝑟6)

. . . . . .
𝑡𝑛 = (s𝑛,p𝑛,o𝑛) �⃗�𝑡𝑛 = (−𝑟3𝑛−2 · 𝜎(𝑠𝑛), 𝑟3𝑛−2,−𝑟3𝑛−1 · 𝜎(𝑝𝑛), 𝑟3𝑛−1,−𝑟3𝑛 · 𝜎(𝑜𝑛), 𝑟3𝑛)

Table 1: Computing the triple vector 𝑦𝑡 of an RDF triple 𝑡.

We use AES to encrypt the actual plaintext triple 𝑡 with an encryption key
derivable from our previously generated seed 𝑚𝑡 and return both, the resulting
AES ciphertext of 𝑡 denoted by 𝑡 and the ciphertext of the seed denoted by �̂�𝑡

as final ciphertext triple 𝑐𝑡 = ⟨𝑡, �̂�𝑡⟩.

Generating Decryption Keys (KeyGen) As outlined above, decryption
keys must be able to decrypt all triples that satisfy their inherent triple pattern
(i.e., one query key can open multiple locks). In order to compute a decryption
key based on a triple pattern 𝑡𝑝 = (𝑠, 𝑝, 𝑜) with 𝑠, 𝑝, and 𝑜 either bound or
unbound, we define its corresponding vector �⃗� as �⃗�𝑡𝑝 = (𝑥𝑠, 𝑥′𝑠, 𝑥𝑝, 𝑥′𝑝, 𝑥𝑜, 𝑥′𝑜)
with:

if 𝑙 is bound: 𝑥𝑙 := 1, 𝑥′𝑙 := 𝜎(𝑙), with 𝑙 ∈ {𝑠, 𝑝, 𝑜}
if 𝑙 is not bound: 𝑥𝑙 := 0, 𝑥′𝑙 := 0, with 𝑙 ∈ {𝑠, 𝑝, 𝑜}

Again, 𝜎 denotes a mapping function that maps a triple pattern’s subject,
predicate, and object value to elements in Z𝑁 . Table 2 illustrates the construc-
tion of a query vector �⃗�𝑡𝑝 that corresponds to a triple pattern 𝑡𝑝.

Decryption of RDF Triples (Dec) To verify whether an encrypted triple
can be decrypted with a given decryption key, we compute the inner-product
of their corresponding triple vector �⃗�𝑡 and query vector �⃗�𝑡𝑝, with 𝑡 = (𝑠𝑡, 𝑝𝑡, 𝑜𝑡)
and 𝑡𝑝 = (𝑠𝑡𝑝, 𝑝𝑡𝑝, 𝑜𝑡𝑝):



Triple Pattern 𝑡𝑝 Query Vector �⃗�𝑡𝑝

𝑡𝑝1 = (?,?,?) �⃗�𝑡𝑝1 = (0, 0, 0, 0, 0, 0)
𝑡𝑝2 = (s2,?,?) �⃗�𝑡𝑝2 = (1, 𝜎(𝑠2), 0, 0, 0, 0)
𝑡𝑝3 = (s3,p3,?) �⃗�𝑡𝑝3 = (1, 𝜎(𝑠3), 1, 𝜎(𝑝3), 0, 0)

. . . . . .
𝑡𝑝𝑛 = (s𝑛,p𝑛,o𝑛) �⃗�𝑡𝑝𝑛 = (1, 𝜎(𝑠𝑛), 1, 𝜎(𝑝𝑛), 1, 𝜎(𝑜𝑛))

Table 2: Computing the query vector �⃗�𝑡𝑝 that corresponds to a triple pattern 𝑡𝑝

�⃗�𝑡 · �⃗�𝑡𝑝 = 𝑦𝑠𝑡
𝑥𝑠𝑡𝑝

+ 𝑦′𝑠𝑡
𝑥′𝑠𝑡𝑝

+ 𝑦𝑝𝑡
𝑥𝑝𝑡𝑝

+ 𝑦′𝑝𝑡
𝑥′𝑝𝑡𝑝

+ 𝑦𝑜𝑡
𝑥𝑜𝑡𝑝

+ 𝑦′𝑜𝑡
𝑥′𝑜𝑡𝑝

Only when �⃗�𝑡 · �⃗�𝑡𝑝 = 0 is it possible to decrypt the encrypted seed �̂�𝑡, hence
the corresponding symmetric AES key can be correctly derived and the plaintext
triple 𝑡 be returned. Otherwise (i.e., �⃗�𝑡 · �⃗�𝑡𝑝 ̸= 0), an arbitrary seed 𝑚′ ̸= 𝑚𝑡 is
generated hence encrypted triple 𝑐𝑡 cannot be decrypted [26].

4 Optimising Query Execution over Encrypted RDF

The secure data store holds all the encrypted triples, i.e. {𝑐𝑡1 , 𝑐𝑡2 , · · · , 𝑐𝑡𝑛
}, being

𝑛 the total number of triples in the dataset. Besides assuring the confidentiality
of the data, the data store is responsible for enabling the querying of encrypted
data.

In the most basic scenario, since triples are stored in their encrypted form, a
user’s online query would be resolved by iterating over all triples in the dataset,
checking whether any of them can be decrypted with a given decryption key.
Obviously, this results in an inefficient process at large scale. As a first improve-
ment one can distribute the set of encrypted triples among different peers such
that decryption could run in parallel. In spite of inherent performance improve-
ments, such a solution is still dominated by the available number of peers and
the – potentially large – number of encrypted triples each peer would have to
process. Current efficient solutions for querying encrypted data are based on (a)
using indexes to speed up the decryption process by reducing the set of poten-
tial solutions; or (b) making use of specific encryption schemes that support the
execution of operations directly over encrypted data [13]. Our solution herein
follows the first approach, whereas the use of alternative and directly encryption
mechanisms (such as homomorphic encryption [28]) is complementary and left
to future work.

In our implementation of such a secure data store, we first encrypt all triples
and store them in a key-value structure, referred to as an EncTriples Index,
where the keys are unique integer IDs and the values hold the encrypted triples
(see Figure 2 and Figure 3 (right)). Note that this structure can be implemented
with any traditional Map structure, as it only requires fast access to the en-
crypted value associated with a given ID. In the following, we describe two
alternative approaches, i.e., one using three individual indexes and one based on
Vertical Partitioning (VP) for finding the range of IDs in the EncTriples Index
which can satisfy a triple pattern query. In order to maintain simplicity and
general applicability of the proposed store, both alternatives consider key-value
backends, which are increasingly used to manage RDF data [8], especially in



Key:SPO Value:ID
(ℎ(𝑠1), ℎ(𝑝1), ℎ(𝑜3)) 1
(ℎ(𝑠1), ℎ(𝑝3), ℎ(𝑜2)) 2
(ℎ(𝑠2), ℎ(𝑝2), ℎ(𝑜1)) 3

. . . . . .

(ℎ(𝑠𝑥), ℎ(𝑝𝑦), ℎ(𝑜𝑧)) n

Key:POS Value:ID
(ℎ(𝑝1), ℎ(𝑜3), ℎ(𝑠1)) 1
(ℎ(𝑝2), ℎ(𝑜1), ℎ(𝑠2)) 3
(ℎ(𝑝3), ℎ(𝑜2), ℎ(𝑠1)) 2

. . . . . .

(ℎ(𝑝𝑦), ℎ(𝑜𝑧), ℎ(𝑠𝑥)) n

Key:OSP Value:ID
(ℎ(𝑜1), ℎ(𝑠2), ℎ(𝑝2)) 3
(ℎ(𝑜2), ℎ(𝑠1), ℎ(𝑝3)) 2
(ℎ(𝑜3), ℎ(𝑠1), ℎ(𝑝1)) 1

. . . . . .

(ℎ(𝑜𝑧), ℎ(𝑠𝑥), ℎ(𝑝𝑦)) n

Key:ID Value:Enc. Triple
1 𝑐(𝑠1,𝑝1,𝑜3)

2 𝑐(𝑠1,𝑝3,𝑜2)

3 𝑐(𝑠2,𝑝2,𝑜1)

. . . . . .

n 𝑐(𝑠𝑥,𝑝𝑦,𝑜𝑧)

SPO Index

POS Index

OSP Index

EncTriples
Index

Fig. 2: 3-Index approach for indexing and retrieval of encrypted triples.

distributed scenarios. It is also worth mentioning that we focus on basic triple
pattern queries as (i) they are the cornerstone that can be used to build more
complex SPARQL queries, and (ii) they constitute all the functionality to sup-
port the Triple Pattern Fragments [31] interface.

3-Index Approach. Following well-known indexing strategies, such as from
CumulusRDF [25], we use three key-value B-Trees in order to cover all triple
pattern combinations: SPO, POS and OSP Indexes. Figure 2 illustrates this organi-
sation. As can be seen, each index consists of a Map whose keys are the securely
hashed (cf. PBKDF2 [19]) subject, predicate, and object of each triple, and
values point to IDs storing the respective ciphertext triples in the EncTriples
Index.

Algorithm 1 shows the resolution of a (s,p,o) triple pattern query using the
3-Index approach. First, we compute the secure hashes h(s), h(p) and h(o)
from the corresponding s, p and o provided by the user (Line 1). Our ℎ𝑎𝑠ℎ(𝑠, 𝑝, 𝑜)
function does not hash unbounded terms in the triple pattern but treats them
as a wildcard ’?’ term (hence all terms will be retrieved in the subsequent range
queries). Then, we inspect the user query and select the best index to evaluate
the query (Line 2). In our case, the SPO Index serves (s,?,?) and (s,p,?) triple
patterns, the POS Index satisfies (?,p,?) and (?,p,o), and the OSP Index index
serves (s,?,o) and (?,?,o). Both (s,p,o) and (?,?,?) can be solved by any of
them. Then, we make use of the selected index to get the range of values where
the given h(s), h(p), h(o) (or ’anything’ if the wildcard ’?’ is present in a
term) is stored (Line 3). Note that this search can be implemented by utilising



Algorithm 1 3-Index_Search(s,p,o,key)
1: (ℎ(𝑠), ℎ(𝑝), ℎ(𝑜))← ℎ𝑎𝑠ℎ(𝑠, 𝑝, 𝑜);
2: 𝑖𝑛𝑑𝑒𝑥← 𝑠𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑒𝑥(𝑠, 𝑝, 𝑜); ◁ 𝑖𝑛𝑑𝑒𝑥 = {𝑆𝑃 𝑂|𝑃 𝑂𝑆|𝑂𝑆𝑃}
3: 𝐼𝐷𝑠[ ]← 𝑖𝑛𝑑𝑒𝑥.𝑔𝑒𝑡𝑅𝑎𝑛𝑔𝑒𝑉 𝑎𝑙𝑢𝑒𝑠(ℎ(𝑠), ℎ(𝑝), ℎ(𝑜));
4: for each (𝑖𝑑 ∈ 𝐼𝐷𝑠) do
5: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒← 𝐸𝑛𝑐𝑇 𝑟𝑖𝑝𝑙𝑒𝑠.𝑔𝑒𝑡(𝑖𝑑);
6: < 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒, 𝑠𝑡𝑎𝑡𝑢𝑠 >← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒, 𝑘𝑒𝑦);
7: if (𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑣𝑎𝑙𝑖𝑑) then
8: output(𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒);
9: end if

10: end for

B-Trees [10, 29] for indexing the keys. For each of the candidate ID values in the
range (Line 4), we retrieve the encrypted triple for such ID by searching for this
ID in the EncTriples Index (Line 5). Finally, we proceed with the decryption of
the encrypted triple using the key provided by the user (Line 6). If the status
of such decryption is valid (Line 7) then the decryption was successful and we
output the decrypted triples (Line 8) that satisfy the user query.

Thus, the combination of the three SPO, POS and OSP Indexes reduces the
search space of the query requests by applying simple range scans over hashed
triples. This efficient retrieval has been traditionally served through tree-based
map structures guaranteeing 𝑙𝑜𝑔(𝑛) costs for searches and updates on the data,
hence we rely on B-Tree stores for our practical materialisation of the indexes.
In contrast, supporting all triple pattern combinations in 3-Index comes at the
expense of additional space overheads, given that each (h(s),h(p),h(o)) of a
triple is stored three times (in each SPO, POS and OSP Indexes). Note, however,
that this is a typical scenario in RDF stores and in our cases, the triples are
encrypted and stored just once (in EncTriples Index).

Vertical Partitioning Approach. Vertical partitioning [1] is a well-known
RDF indexing technique motivated by the fact that few predicates are used to
describe a dataset [14]. Thus, this technique stores one “table” per predicate,
indexing (S,O) pairs that are related via the predicate. In our case, we pro-
pose to use one key-value B-Tree for each h(p), storing (h(s),h(o)) pairs as
keys, and the corresponding ID as the value. Similar to the previous case, the
only requirement is to allow for fast range queries on their map index keys.
However, in the case of an SO index, traditional key-value schemes are not ef-
ficient for queries where the first component (the subject) is unbound. Thus,
to improve efficiency for triple patterns with unbounded subject (i.e. (?,𝑝𝑦,𝑜𝑧)
and (?,?,𝑜𝑧)), while remaining in a general key-value scheme, we duplicate the
pairs and introduce the inverse (h(o),h(s)) pairs. The final organisation is
shown in Figure 3 (left), where the predicate maps are referred to as Pred_h(p1),
Pred_h(p2),..., Pred_h(p𝑛) Indexes. As depicted, we add "so" and "os" keywords
to the stored composite keys in order to distinguish the order of the key.

Algorithm 2 shows the resolution of a (s,p,o) triple pattern query with the
VP organisation. In this case, after performing the variable initialisation (Line



Key:{SO|OS} Value:ID
("so",ℎ(𝑠1), ℎ(𝑜3)) 1
("os",ℎ(𝑜3), ℎ(𝑠1)) 1

. . . . . .

Key:{SO|OS} Value:ID
("so",ℎ(𝑠2), ℎ(𝑜1)) 3
("os",ℎ(𝑜1), ℎ(𝑠2)) 3

. . . . . .

Key:{SO|OS} Value:ID
("so",ℎ(𝑠𝑥), ℎ(𝑜𝑧)) n
("os",ℎ(𝑜𝑧), ℎ(𝑠𝑥)) n

. . . . . .

Key:ID Value:Enc. Triple
1 𝑐(𝑠1,𝑝1,𝑜3)

2 𝑐(𝑠1,𝑝3,𝑜2)

3 𝑐(𝑠2,𝑝2,𝑜1)

. . . . . .

n 𝑐(𝑠𝑥,𝑝𝑦,𝑜𝑧). . .

Pred_h(p1)
Index

Pred_h(p2)
Index

Pred_h(p𝑛)
Index

EncTriples
Index

Fig. 3: Vertical Partitioning approach for indexing and retrieval of encrypted
triples.

1) and the aforementioned secure hash of the terms (Line 2), we inspect the
predicate term h(p) and select the corresponding predicate index (Line 3), i.e.,
Pred_h(p). Nonetheless, if the predicate is unbounded, all predicate indexes are
selected as we have to iterate through all tables, which penalises the performance
of such queries. For each predicate index, we then inspect the subject term (Lines
5-9). If the subject is unbounded (Line 5), we will perform a ("os",h(o),?)
range query over the corresponding predicate index (Line 6), otherwise we exe-
cute a ("so",h(s),h(o)) range query. Note that in both cases the object could
also be unbounded. The algorithm iterates over the candidates IDs (Lines 10-
end) in a similar way to the previous cases, i.e., retrieving the encrypted triple
from EncTriples Index (Line 11) and performing the decryption (Lines 12-14).

Overall, VP needs less space than the previous 3-Index approach, since the
predicates are represented implicitly and the subjects and objects are represented
only twice. In contrast, it penalises the queries with unbound predicate as it has
to iterate through all tables. Nevertheless, studies on SPARQL query logs show
that these queries are infrequent in real applications [3].

Protecting the Structure of Encrypted Data. The proposed hash-based
indexes are a cornerstone to boosting query resolution performance by reducing
the candidate encrypted triples that may solve the user queries. The use of
security hashes [19] assures that the terms cannot be revealed but, in contrast,
the indexes themselves reproduce the structure of the underlying graph (i.e., the
in/out degree of nodes). However, the structure should also be protected as hash-
based indexes can represent a security risk if the data server is compromised.
State-of-the-art solutions [13] propose the inclusion of spurious information, that
the query processor must filter out in order to obtain the final query result. In
our particular case, this technique can be adopted by adding dummy triple
hashes into the indexes with a corresponding ciphertext (in EncTriples Index)



Algorithm 2 VerticalPartitioning_Search(s,p,o,key)
1: 𝐼𝐷𝑠[ ]← ();
2: (ℎ(𝑠), ℎ(𝑝), ℎ(𝑜))← ℎ𝑎𝑠ℎ(𝑠, 𝑝, 𝑜);
3: 𝐼𝑛𝑑𝑒𝑥𝑒𝑠[]← 𝑠𝑒𝑙𝑒𝑐𝑡𝑃 𝑟𝑒𝑑𝐼𝑛𝑑𝑒𝑥(ℎ(𝑝)); ◁ 𝐼𝑛𝑑𝑒𝑥𝑒𝑠 ⊆ {𝑃 𝑟𝑒𝑑_ℎ(𝑝1), · · · , 𝑃 𝑟𝑒𝑑_ℎ(𝑝𝑛)𝐼𝑛𝑑𝑒𝑥}
4: for each (𝑖𝑛𝑑𝑒𝑥 ∈ 𝐼𝑛𝑑𝑒𝑥𝑒𝑠) do
5: if (𝑠 =?) then
6: 𝐼𝐷𝑠[ ]← 𝑖𝑛𝑑𝑒𝑥.𝑔𝑒𝑡𝑅𝑎𝑛𝑔𝑒𝑉 𝑎𝑙𝑢𝑒𝑠(”𝑜𝑠”, ℎ(𝑜), ?);
7: else
8: 𝐼𝐷𝑠[ ]← 𝑖𝑛𝑑𝑒𝑥.𝑔𝑒𝑡𝑅𝑎𝑛𝑔𝑒𝑉 𝑎𝑙𝑢𝑒𝑠(”𝑠𝑜”, ℎ(𝑠), ℎ(𝑜));
9: end if

10: for each (𝑖𝑑 ∈ 𝐼𝐷𝑠) do
11: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒← 𝐸𝑛𝑐𝑇 𝑟𝑖𝑝𝑙𝑒𝑠.𝑔𝑒𝑡(𝑖𝑑);
12: < 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒, 𝑠𝑡𝑎𝑡𝑢𝑠 >← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒, 𝑘𝑒𝑦);
13: if (𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑣𝑎𝑙𝑖𝑑) then
14: output(𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑙𝑒);
15: end if
16: end for
17: end for

that cannot be decrypted by any key, hence will not influence the query results.
Such an approach ensures that both the triple hashes and their corresponding
ciphertexts are not distinguishable from real data.

5 Evaluation

We develop a prototypical implementation2 of the proposed encryption and in-
dexing strategies. Our tool is written in Java and it relies on the Java Pairing-
Based Cryptography Library (JPBC [12]) to perform all the encryption/decryp-
tion operations. While, we use MapDB3 as the supporting framework for the
indexes. We provide an interface that takes as input a triple pattern query and
a query key, and outputs the results of the query.

We evaluate our proposal in two related tasks: (i) performance of the data
loading (encryption and indexing) and (ii) performance of different user queries
(query execution on encrypted data). In both cases, we compare our proposed
3-Index strategy w.r.t the vertical partitioning (VP) approach. Finally, we mea-
sure the performance overhead associated with query resolution, introduced by
the secure infrastructure, by comparing its results with a counterpart non-secure
triplestore. For a fair comparison, we implement the non-secure triplestore with
similar 3-Index and VP indexing strategies, storing the RDF data in plain. The
approaches are referred to as 3-Index-plain and VP-plain respectively.

Table 3 describes our experimental datasets, reporting the number of triples,
different subjects (|S|), predicates (|P|) and objects (|O|), as well as the file size
(in NT format). Note that there is no standard RDF corpus that can be used to
evaluate RDF encryption approaches, hence we choose a diverse set of datasets
that have been previously used to benchmark traditional RDF stores or there is a
2 Source code and experimental datasets are available at:

https://aic.ai.wu.ac.at/comcrypt/sld/.
3 http://www.mapdb.org/



Dataset Triples |S| |P| |O| Size (MB)
Census 361,842 51,768 26 6,901 52
Jamendo 1,049,637 335,925 26 440,602 144
AEMET 3,547,154 394,289 23 793,664 726
LUBM-100K 100,000 22,932 18 11,588 15
LUBM-200K 200,000 39,244 18 23,749 29
LUBM-500K 500,000 87,984 18 60,028 71
LUBM-1000K 1,000,000 169,783 18 120,464 139
LUBM-2000K 2,000,000 333,105 18 241,342 277
LUBM-5000K 5,000,000 820,185 18 604,308 694

Table 3: Statistical dataset description.

use case that indicates they could potentially benefit from a secure data store. On
the one hand, we use the well-known Lehigh University Benchmark (LUBM [18])
data generator to obtain synthetic datasets of incremental sizes from 100K triples
to 5M triples. On the other hand, we choose real-world datasets from different
domains: census represents the 2010 Australian census, where sensitive data
must be preserved and users could have different partial views on the dataset;
jamendo lists music records and artists, where some data can be restricted to
certain subscribers; and AEMET includes sensor data from weather stations in
Spain, which is a real use case where the old data is public but the most recent
data is restricted to particular users. Tests were performed on a computer with
an Intel Xeon E5-2650v2 @ 2.6 GHz (32 cores), RAM 256 GB, Debian 7.9. All
of the reported (elapsed) times are the average of three independent executions.

Data loading. Figure 4 shows the dataset load times4 for the 3-Index and
VP strategies. The reported time consists of the time to encrypt the triples us-
ing the aforementioned FE scheme, and the time to securely hash the terms
and create the different indexes. In contrast, the non-secure triplestores, i.e.
the 3-Index-plain and VP-plain counterparts, only require the dataset to be
indexed (we also make use of the hash of the terms in order to compare the
encryption overhead).

The results show that the time of both the 3-Index and the VP strategy
scales linearly with the number of triples, which indicates that the representa-
tion can scale in the envisioned Linked Data scenario. It is worth noting that
both strategies report similar performance results, where VP is slightly faster for
loading given that only the subject and object is used to index each triple (the
predicate is implicitly given by vertical partitioning). Finally, note that the com-
parison w.r.t the plain counterparts shows that the encryption overhead can be
of one order of magnitude for the smaller datasets. In contrast, the encryption
overhead is greatly reduced for larger datasets which is primarily due to the fact
that the loading time for large datasets is the predominant factor, as the B-Tree
indexes become slower the more triples are added (due to rebalancing).

Query resolution. Figure 5 shows the query resolution time for two selected
datasets5, LUBM-5000K and Jamendo, considering all potential triple patterns.
4 We first list the LUBM datasets in increasingly order of triples, and use name ab-

breviations for LUBM (L), Census (L), Jamendo (J) and AEMET (A).
5 Results are comparable for all datasets.
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Fig. 4: Time for loading (encrypting+indexing) the entire dataset for 3-Index and VP.
The counterpart non-secure strategies, 3-Index-plain and VP-plain, only report the
indexing time.

To do so, we sample 1,000 queries of each type and report the average resolution
time. As expected, the 3-Index reports a noticeable better performance than
VP for queries with unbound predicates given that VP has to iterate though all
predicate tables in this case. In turn, the 3-Index and the VP approaches remain
competitive with respect to their non-secure counterparts, if a look-up returns
only a small amount of results as it is usually the case for (s,?,?), (s,?,o),
(s,p,o) queries. However, the more query results that need to be returned the
longer the decryption takes. At this point we also want to stress that due to
the nature of our approach, each result triple can be returned as soon as its
decryption has finished. This is in line with the incremental nature of the Triple
Pattern Fragment [31] approach, which paginates the query results (typically
including 100 results per page), allowing users to ask for further pages if required.
For example, decrypting Jamendo entirely took about 2256s for VP and 2808s for
3-Index, leading to respective triple decryption rates of 465 triples/s and 374
triples/s in a cold scenario, which already fulfills the performance requirements
to feed several Triple Pattern Fragments per second.

Our experiments have shown that (i) the performance of our indexing strat-
egy is not affected by the encryption, hence, is as effective on encrypted data
as it is on non-encrypted data, and (ii) the decryption of the results is a fast
process which can be utilised in our Linked Data scenario, especially under the
umbrella of the Linked Data Fragments framework.

6 Conclusion

To date Linked Data publishers have mainly focused on exposing and linking
open data, however there is also a need to securely store, exchange, and query
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Fig. 5: Cold query times of LUBM-5000K (LHS) and Jamendo (RHS) for 3-Index, VP,
and their counterpart non-secure strategies in ms (logarithmic y-axis).

also sensitive data alongside (i.e. closed data). Both access control and encryp-
tion mechanisms are needed to protect such data from unauthorised access, secu-
rity breaches, and potentially untrusted service providers. Herein, we presented a
mechanism to provide secure and fine-grained encryption of RDF datasets. First,
we proposed a practical realisation of the Functional Encryption (FE) scheme,
which allows data providers to generate query keys based on triple patterns,
such that one key can decrypt multiple triples. Then, we presented two index-
ing strategies (implemented using MapDB) to enhance query performance, the
main scalability bottleneck when it comes to serving user requests. Our empirical
evaluation shows that both indexing strategies on encrypted RDF data report
reasonable loading and query performance overheads with respect to traditional,
non-encrypted data retrieval. Our results also indicate that the approach is rel-
atively slow for batch decryption, but this can be counteracted by the fact that
it is suitable for serving incremental results, hence it is particularly suitable for
Linked Data Fragments.

In future work, we plan to inspect different indexing strategies in order to
optimise the loading time and query performance of large queries. We also con-
sider extending our proposal to cater for named graphs, that is, encrypting quads
instead of triples and generating keys based on quad patterns. Finally, we aim
to integrate the proposed secure RDF store with a “policy” tier by employing
Attribute-based Access Control (ABAC), which will manage the access/revoca-
tion to the query keys and serve as fully fledged security framework for Linked
Data.
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